
Improved Utilization and Responsiveness

with Gang Scheduling

Dror G� Feitelson

Institute of Computer Science

The Hebrew University of Jerusalem

����� Jerusalem� Israel

Morris A� Jette

Livermore Computing

Lawrence Livermore National Laboratory

Livermore� CA �����

Abstract

Most commercial multicomputers use space�slicing
schemes in which each scheduling decision has an un�
known impact on the future� should a job be sched�
uled� risking that it will block other larger jobs later�
or should the processors be left idle for now in an�
ticipation of future arrivals� This dilemma is solved
by using gang scheduling� because then the impact of
each decision is limited to its time slice� and future
arrivals can be accommodated in other time slices�
This added �exibility is shown to improve overall sys�
tem utilization and responsiveness� Empirical evi�
dence from using gang scheduling on a Cray T�D in�
stalled at Lawrence Livermore National Lab corrobo�
rates these results� and shows conclusively that gang
scheduling can be very e�ective with current technol�
ogy�

� Introduction

As parallel computers become more popular� there
is a growing need for good schedulers that will man�
age these expensive shared resources� And indeed�
many scheduling schemes have been designed� evalu�
ated� and implemented in recent years 	�� ��
�
Many papers investigate scheduling schemes from

a system point of view� asking what the system can
do to improve utilization and response time� but dis�
regarding the e�ect on the user� As a result they
sometimes advocate solutions that require users to
depart from common practice� e�g� to write applica�
tions in a style that supports dynamic partitioning
�i�e� the allocation may change at runtime
 	��� ��
�
rather than the prevalent SPMD style�
We take a di�erent approach� and ask what the

system can do given the constraint that users require
jobs to execute on a �xed number of processors �as in
SPMD
� Within this framework� we compare variable
partitioning� possibly with reordering of the jobs in
the queue� with gang scheduling� We show that al�
though gang scheduling su�ers from more overhead
than variable partitioning� it can lead to signi�cant
improvements due to its added �exibility� Indeed�
gang scheduling can actually give better service �re�
duced response time
 and improved utilization� so us�
ing it leads to a win�win situation relative to variable
partitioning�

The results agree with actual experience on the
LLNL Cray T�D� which employs a home�grown gang
scheduler 	��� ��
 �the original system software uses
variable partitioning
� When this scheduler was
ported to the new Cray machine� utilization nearly
doubled from ����� to ����� on average� Additional
tuning has led to weekly utilizations that top ����

� Approaches to Scheduling

Jobs of Given Size

The schedulers of most commercial parallel systems
use variable partitioning� The user speci�es the num�
ber of processors to use at the time of submitting the
job� The scheduler than carves out a partition of
the required size� and dedicates it to the job for the
duration of its execution� If the required number of
processors is not available� the job is either rejected or
queued� In most systems a time limit is also imposed�
and if the job exceeds it it is killed�

The problem with this scheme is that scheduling
decisions have a potentially large� persistent� and un�
predictable impact on the future� Speci�cally� when a

�



64 32

tim
e

25% utilization
(128-node job queued)

64

tim
e

64 32

tim
e

(128-node job queued)
75% utilization50% utilization

(128 and 32-node jobs queued)

processors processors processors

worst case probable compromise best case

Figure �� Example of the problems faced by variable partitioning�

new job arrives� the system is faced with the following
dilemma�

� if the new job can be accommodated� then
scheduling it immediately will utilize unused re�
sources� so it is good�

� however� if this job runs for a long time� and will
block other jobs in the future� it may lead to
more future loss than current gain� So maybe it
should be left aside�

Consider the following simple case as an example
�Fig� �
� a ����node system is currently running a ���
node job� and there are a ���node job and a ����node
job in the queue� The question is� should the ���node
job be scheduled to run concurrently with the ���node
job� Two outcomes are possible� If the ���node job
is scheduled and it terminates before the ���node job�
resource utilization is improved from ��� possibly up
to ���� But if the ���node job terminates soon after
the ���node job is scheduled� and the ���node job
runs for a long time� the utilization drops from ���
to ���� And� in order not to starve the ����node job�
it might be necessary to just let the ���node job run
to completion� and settle for ��� utilization�
As the future is usually unknown� there is no solu�

tion to this dilemma� and any decision may lead to
fragmentation� Thus using variable partitioning may
lead to signi�cant loss of computing power 	��� ��
�

either because jobs do not �t together� or because
processors are intentionally left idle in anticipation
of future arrivals 	��
�

The most common solution is to reorder the jobs in
the queue so as to pack them more tightly 	��
� One
promising approach is to allow small jobs to move
forward in the queue if they can be scheduled imme�
diately� However� this may cause starvation of large
jobs� so it is typically combined with allowing large
jobs to make reservations of processors for some fu�
ture time� Only short jobs are then allowed to move
ahead in the queue �Fig� �
 	�� ��
�

The problem with this idea is that it requires infor�
mation about job runtimes� A rough approximation
may be obtained from the queue time limit �in most
systems users may choose which queue to use� the
di�erence being that each queue has a distinct set of
resource limits associated with it
� The idea is that
the user would choose the queue that best represents
the application�s needs� and the system would then
be able to select jobs from the di�erent queues to
create a job mix that uses the system�s resources ef�
fectively 	��
� However� experience indicates that this
information is unreliable� as shown by the distribu�
tions of queue�time utilization in Fig� �� The graphs
show that users tend to be extremely sloppy in select�
ing the queue� thus undermining the whole scheme�
�The graphs show the distributions in buckets of �
percentage points� Thus the top left data point in

�



now

tim
e

reservation for large job

terminated

expected

termination

lost to

fragmentation

can be used

for small job

with bounded

execution time

processors

Figure �� Runtime bounds on executing jobs allow reservations to be made for large jobs and then back�lling
with smaller jobs to reduce fragmentation�

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f j
ob

s

percent of queue limit

CTC SP2

15 min
3 hr
6 hr

12 hr
18 hr

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f j
ob

s

percent of queue limit

SDSC Paragon

1 hr
4 hr

12 hr
48 hr

120 hr

Figure �� Job runtimes as a fraction of the batch queue time limit� showing that most jobs use only a
fraction of the time limit� even for queues with very long limits� The plot for each queue limit is normalized
independently�

the left graph shows that about ��� of the jobs sub�
mitted to all the ��hour queues on the Cornell SP�
only used between � and �� of their time limit� i�e�
they were actually shorter than � minutes�

Another solution to the fragmentation problem is

to use adaptive partitioning rather than variable par�
titioning 	��� ��� ��
� The idea here is that the num�
ber of processors used is a compromise between the
user�s request and what the system can provide� Thus
the system can take the current load into account�

and reduce the partition sizes under high load con�
ditions� However� this scheme also requires a change
of user interfaces� albeit much less disruptive than
dynamic partitioning�
The prefered solution is to use gang scheduling

	��� �� �� ��
� With gang scheduling� jobs receive the
number of processors requested� but only for a lim�
ited time quantum� Then a �multi�context�switch� is
performed on all the processors at once� and another
job �or set of jobs
 is scheduled instead� Thus all

�



tim
e

64 32

128

tim
e

64 32

128

62.5% utilization 87.5% utilization

processors processors

worst case good case

Figure �� Example of how the �exibility a�orded by time slicing can increase system utilization� compare
with Fig� ��

jobs can execute concurrently using time slicing� as in
conventional uniprocessors� As a result� a scheduling
decision only impacts the scheduling slot to which it
pertains� other slots are available to handle other jobs
and future arrivals� this adds �exibility and boosts
performance�

Returning to the example considered earlier� the
situation with gang scheduling is illustrated in Fig�
�� The ���node job can safely run in the same time�
slot with the ���node job� while the ����node job gets
a separate time�slot� There is no danger of starva�
tion� As long as all three jobs are active� the utiliza�
tion is ������ Even if the ���node job terminates�
leaving the ���node job to run alone in its time�slot�
the utilization is ������ Naturally� a few percentage
points should be shaved o� these �gures to account
for context�switching overhead� Nevertheless� this is
a unique case where time�slicing� despite its added
overhead� can lead to better resource utilization than
batch scheduling�

Using gang scheduling not only improves utiliza�
tion � it also reduces mean response time� It is well
known that mean response time is reduced by the
shortest�job��rst discipline� In workloads with high
variability this is approximated by time slicing� be�
cause chances are that a new job will have a short
runtime 	��� ��
� As production workloads do in�
deed exhibit a high variability 	�
� it follows that gang

scheduling will reduce mean response time� Indeed�
gang scheduling has even been advocated in conjunc�
tion with dynamic partitioning 	��
�

� Simulation Results

��� The Compared Scheduling
Schemes

In order to demonstrate the ideas described above�
we simulate the performance of a multicomputer sub�
jected to a realistic workload and using one of a set
of di�erent scheduling schemes� these are�

FCFS� the base case we use for comparison is
variable partitioning with �rst�come��rst�serve
queuing� This scheme is expected to su�er from
signi�cant fragmentation�

Back�ll� back�lling was developed for the Argonne
National Lab SP� machine 	��
� and has recently
also been installed on the Cornell SP� and other
machines� It allows short jobs to move forward in
the queue provided they do not cause delays for
any other job� Only jobs that do not cause delay
are moved forward� We assume the scheduler has
perfect information when making such decisions�
i�e� it knows the exact runtimes of all the jobs in
the queue�

�



0

20000

40000

60000

80000

100000

120000

1 16 32 64 128

nu
m

be
r 

of
 jo

bs

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

nu
m

be
r 

of
 o

cc
ur

en
ce

s

run length

0

5000

10000

15000

20000

25000

1 16 32 64 128

av
er

ag
e 

ru
nt

im
e

job size

4 buckets
all sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

pr
ob

ab
ili

ty

runtime

1st bucket
2nd bucket
3rd bucket
4th bucket

Figure �� Statistical properties of the workload model� 	a
 distribution of job sizes 	b
 distribution of
runlengths 	number of repeated executions
 	c
 correlation of runtime with job size� for all sizes and when
jobs are grouped into four buckets according to size 	d
 cumulative distributions of runtimes for the jobs in
the four buckets�

Prime� this policy is a simpli�ed version of a policy
used on the SP� machine at NASA Ames 	��
�
The idea is to distinguish between prime time
and non�prime time�� during prime time� large
jobs �more than �� nodes
 are restricted to ��
minutes� while small jobs are allowed up to �
hours provided at least �� nodes are available�
Thus� if only a few nodes are available� all jobs
are restricted to �� minutes� and responsiveness
for short jobs is improved� This achieves a simi�
lar e�ect to setting aside a pool of nodes for in�
teractive jobs 	��
� During non�prime time these

�Our workload model does not include a daily cycle of job

submittals � it is a continuous stream of jobs with the same

statistical properties� Thus in our simulations the distinction

is only in the scheduling policy� which is switched every ��

hours�

restrictions are removed� Again� we assume the
scheduler knows the runtimes of all jobs�

Gang� gang scheduling with no information regard�
ing runtimes� The jobs are packed into slots
using the buddy scheme� including alternate
scheduling 	�
� Two versions with di�erent
scheduling time quanta are compared� one has
relatively small time quantum of �� seconds� so
most jobs e�ectively run immediately� and the
other has a time quantum of �� minutes ����
seconds
� so jobs may be queued for a certain
time before getting to run�

��� Simulation Methodology

The workload model is an improved version of the
model used in 	�
� It is based on workload analysis

�



0

500

1000

1500

2000

2500

3000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e 

sl
ow

do
w

n

system load

fcfs
backfill

prime
gang 10

gang 600

Figure �� Simulation results�

from a number of production systems 	�� ��� ��
� and
is characterized as follows �Fig� �
�

� The distribution of job sizes emphasizes small
jobs and powers of two�

� The distribution of runtimes is a three�stage hy�
perexponential� where the relative weights of the
three stages depend on the job size� This depen�
dence is used to create a correlation between the
job size and the runtime�

� The arrivals are Poisson� except for jobs that are
re�run a number of times� in which case they are
re�submitted immediately upon completion�

The simulation uses the batch means method to
evaluate con�dence intervals� Each batch includes
���� job terminations� The �rst batch was discarded
to account for simulationwarmup� The length of each
experiment �i�e� the simulation for each data point in
the results
 is at least � batches� or more as required
so that the ��� con�dence interval is no larger than
��� of the data point value� up to a maximum of
��� batches� Interestingly� simulations of all schedul�
ing schemes except gang scheduling with short time
quanta used all ��� batches� without a signi�cant re�
ductions in the con�dence interval� it was typically
in the range of ������ of the data point value� This
re�ects the very high variance present in the work�
load�

The sequence of job arrivals is generated once and
reused for each data point and each scheme� Only the
mean interarrival time is changed to create di�erent
load conditions�

The performance metric is the average slowdown�
The slowdown for a given job is de�ned as the ratio
between its response time on a loaded system �i�e� its
queuing time plus run time and possible preempted
time
 and its runtime on a dedicated system�

��� Experimental Results

The results are shown in Fig� �� As expected� FCFS
saturates at extremely low loads� and even before
saturation it tends to create very high slowdowns�
Back�lling and delaying large jobs to non�prime time
are both much better� but back�lling can sustain a
higher load and produces lower slowdowns� Attempts
to improve the performance of the prime�non�prime
policy by �ddling with its parameters �the threshold
between small and large jobs� and the length of the
prime shift
 showed that it is relatively insensitive
to the exact values of these parameters� However� it
should be remembered that our workloadmodel is not
suitable for a detailed study of the prime�non�prime
policy� because it does not include a daily cycle�

Gang scheduling� even with relatively long quanta
of �� minutes� takes the cake� the slowdowns are very
low� and saturation is delayed until system load ap�
proaches �� This agrees with the informal arguments

�



NQS

Cray T3D System
256 processors

batch
requests

interactive

selected requests
using 96 processors

processors at night

jobs blocked if not
enough processors

are available

in daytime up to 256

requests

NQS

batch
requests

interactive
requests

selected requests

processors at night

using 256 processors

256 processors
and preemption instructions

Cray T3D System
256 processors

jobs never blocked

selected jobs using

in daytime up to 512

Original system

Gang Scheduler

Figure �� The place of the gang scheduler in the Cray T�D scheduling system�

presented in Section �� While our simulations may
be criticized for not modeling the overheads involved
in gang scheduling � for example� the overhead of
context switching and the e�ect of corrupting cache
state � we feel that with long enough time quanta
these overheads can be kept relatively low� so the
main results remain valid�

� Experience with Gang

Scheduling on the Cray T�D

The default mode of operation for the Cray T�D is
that of variable partitioning� Generally� jobs are al�
located a partition of processors as soon as a suitable
set becomes available� In the case where a job has
waited for longer than some con�gurable period of
time� the initiation of all other jobs is deferred un�
til it begins execution� The partitions are held until
the job completes and relinquishes them� e�ectively
locking out any other use for those processors� With
such a processor allocation mechanism� the computa�
tional requirements of long�running production jobs
directly con�ict with those of interactive code devel�
opment work�

Our goals in the development of the Gang Sched�
uler for the Cray T�D were�

� Provide better response for interactive jobs that
are submitted directly

� Provide better throughput for batch jobs that
are submitted through NQS

� Permit larger jobs to be executed
� Provide optimum throughput for speci�c jobs� as
designated by management

While achieving all of these objectives would seem
impossible� our initial utilization rate of ����� pro�
vided us a great deal of room for improvement�

In a nutshell� our approach is as follows �Fig� �
�
Originally� batch jobs were submitted via NQS and
interactive jobs were submitted directly to the Cray
system software� NQS bu�ered the jobs� and for�
warded only few small jobs during the day� so that
�hopefully
 su�cient processors would be left free
for interactive use� At night� NQS would submit
enough jobs to �ll the whole machine� With the gang
scheduler� NQS �lls the machine during the day and
over�subscribes it during the night� The gang sched�
uler preempts jobs as necessary in order to provide
timely service to higher�priority jobs� notably inter�
active jobs� This is a �lazy� form of gang schedul�
ing� rather than performing a context switch across
the whole machine at given intervals� speci�c jobs are
chosen for preemption when an urgent need for pro�
cessors arises�

Gang scheduling thus e�ectively creates a larger
virtual machine� and meets the above objectives by�

� Time sharing processors for interactive jobs

�



when experiencing an extremely heavy interac�
tive workload

� Keeping processors fully utilized with batch jobs
until preempted by an interactive or other high
priority job

� Making processors available in a timely fashion
for large jobs

� Making processors available in a timely fash�
ion for speci�c jobs and making those jobs non�
preemptable

Some might argue that interactive computing with
a massively parallel computer is unreasonable� but
interactive computing accounts for a substantial por�
tion of our workload and is used for code development
and rapid throughput� Interactive jobs currently ac�
count for ��� of all jobs executed and ��� of all CPU
cycles used in our environment� A single interactive
job can be allocated up to ��� of all processors and
memory� The aggregate of all interactive work will
normally consume between zero and ���� of all pro�
cessors and memory in our environment� While the
Cray T�D is well suited for addressing the execution
of grand challenge problems� we wanted to expand its
range of functionality into general purpose support of
interactive work as well�

��� Cray T�D Design Issues

The Cray T�D is a massively parallel computer in�
corporating DEC alpha ����� microprocessors� capa�
ble of ��� MFLOPS peak performance� Each pro�
cessor has its own local memory� The system is
con�gured into nodes� consisting of two processors
with their local memory and a network interconnect�
The nodes are connected by a bidirectional three�
dimensional torus communications network� There
are also four synchronization circuits �barrier wires

connected to all processors in a tree shaped struc�
ture� The system at Lawrence Livermore National
Laboratory �LLNL
 has ��� processors� each with ��
megabytes of DRAM�Disk storage is required to store
the job state information for preempted jobs� This
can be either shared or private storage space� We
have created a shared �� gigabyte �le system for this
purpose� The storage requirements will depend upon
the T�D con�guration and the amount of resource
oversubscription permitted�
Without getting into great detail� the T�D severely

constrains processor and barrier wire assignments to
jobs� Jobs must be allocated a processor count which

is a power of two� with a minimum of two processors
�one node
� The processors allocated to a job must
have a speci�c shape with speci�c dimensions for a
given problem size� For example� an allocation of
�� processors must be made with a contiguous block
with � processors in the X direction� � processors in
the Y direction and � processors in the Z direction�
Furthermore� the possible locations of the processors
assignments is restricted� These very speci�c shapes
and locations for processor assignments are the result
of the barrier wire structure� Jobs must be allocated
one of the four barrier wires when initiated� The
barrier wire assigned to a job cannot change if the
job is relocated and� under some circumstances� two
jobs sharing a single barrier wire may not be located
adjacent to each other� The number of processors
assigned to a job can not change during execution
	�
�

There are two fundamentally di�erent ways of pro�
viding for timesharing of processors� The entire state
of a job� including memory contents� register contents
and switch state information can be written to disk�
Alternately� the register and switch state information
can be saved and the memory shared through pag�
ing� Saving the entire job state clearly makes context
switches very time consuming� however� it can pro�
vide a means of relocating jobs to di�erent processors
and provide a means of preserving executing jobs over
computer restarts� Sharing memory through paging
can make for much faster context switches� Our sys�
tem provides timesharing by saving the entire state
of a job to disk� Cray does not support paging on this
architecture because of the large working sets typical
of programs executed and in order to reduce system
complexity�

Timesharing by saving the entire state of a job to
disk has an additional advantage as well� Given the
T�D�s constraints on processor assignment� the abil�
ity to relocate jobs with this mechanism clearly make
it preferable� While the ability to preserve execut�
ing jobs over computer restarts has proven to be of
some use� most programs complete in a few hours and
can be restarted without substantial impact upon the
system� Unfortunately� the high context switch time
provides lower interactivity than would be desirable�
It should also be noted that the system only supports
the movement of a job�s state in it�s entirety� It is not
possible to initiate state transfers on a processor by
processor basis� although that capability would im�
prove the context switch time�

�



Wait Do�not�disturb Processor
Job Class Priority Time Time Multiplier Limit
Interactive � � Sec �� Sec ���
Debug � ��� Sec � Year ��
Production � � Hour �� Sec ���
Benchmark � � Year � Year ��
Standby � � Year � Sec ���

Table �� Scheduling parameters for di�erent job classes�

The original version of this Gang Scheduler was de�
veloped for the BBN TC���� computer� The BBN
computer permitted programs to be assigned pro�
cessors without locality constraints� Its timesharing
through shared memory and paging was successful at
providing both excellent interactivity and utilization
	��� ��
�

��� Policy Overview

The T�D Gang Scheduler allocates processors and
barrier circuits for all programs� In order to satisfy
the diverse computational requirements of our clients�
the programs are classi�ed by access requirements�

� Interactive class jobs require responsive service
� Debug class jobs require responsive service and
can not be preempted

� Production class jobs require good throughput
� Benchmark class jobs can not be preempted
� Standby class jobs have low priority and are suit�
able for absorbing otherwise idle compute re�
sources

There are several class�dependent scheduling pa�
rameters to achieve the desired performance charac�
teristics�

� Priority� Job classes are prioritized for service�
We make interactive jobs higher priority than
production jobs during the daytime and assign
them equal priority at night�

� Wait time� The maximumtime that a job should
wait before �or between
 processor access� This
is used to ensure timely responsiveness� espe�
cially for interactive and debug class jobs� After
a job has waited to be loaded for the maximum
wait time� an attempt will be made to reserve a
block of processors for it� This processor reser�
vation mechanism frequently preempts multiple
small jobs to prevent starvation of large jobs�

� Do�not�disturb time multiplier� This parameter
is multiplied by the number of processors to ar�
rive at the do�not�disturb time� the minimum
processor allocation time before preemption� A
job will never be preempted before its do�not�
disturb time is up� This allows the desire for
timely response to be balanced against the cost
of moving a job�s state onto disk and back to
memory �it is similar to the scheme proposed
for the Tera MTA 	�

� The do�not�disturb time
multiplier should be set to a value substantially
larger than the time required to move a job�s
state in one processor from memory to disk and
back to memory� This time will vary with the
disk con�guration� On the LLNL T�D with ���
processors and �� megabytes of memory each�
the entire torus or processors can be repacked in
about eight minutes or one second per processor�

� Processor limit� The maximum number of pro�
cessors which can be allocated to jobs of this
class� This is used to restrict the number of pro�
cessors allocated to non�preemptable jobs during
the daytime�

The scheduling parameters currently being used
during the daytime on weekdays are shown in Ta�
ble �� The time of one year is used in several cases to
insure no preemption or an inde�nite wait for some
job classes�
Several non�class dependent scheduling parameters

also exist to regulate computer�wide resource use�

� Large job size� The minimum number of proces�
sors requested by a job for it to be considered
�large�� We set this to �� during daytime�

� Large processor limit� The maximumnumber of
processors which can be allocated to �large� jobs
at any time Since �large� jobs can take a signif�
icant period of time to have their state moved
between memory and disk� interactivity can be

�



improved by restricting the number of proces�
sors allocated to them� Our limit is ��� during
daytime�

� Job processor limit� The maximum number of
processors which can be allocated to any single
job� We use ���� i�e� we do not place such a limit�

� System processor limit� The maximum num�
ber of processors used by jobs either running or
swapped to disk� This de�nes the degree of over�
allocation� we use ���� i�e� an overallocation fac�
tor of ����� A limit is required to avoid �lling the
�le system used for job state information� We
are conservative in our allocation of this storage
area because it is shared� Jobs will be queued�
but not initiated to avoid exceeding this parame�
ter� If an attempt is made to preempt a job when
insu�cient storage is available� that job will con�
tinue execution and no further attempts will be
made to preempt it�

��� Job Scheduling Algorithm

We have implemented a two pass scheduling algo�
rithm� The �rst pass checks for jobs which have
waited for loading longer than their job class� max�
imum wait time� These jobs are viewed as having
a high priority for loading and special measures are
taken for loading them� If there is more than one such
job� a list of these jobs is constructed then sorted by
job class priority and within each priority value by the
time waiting for loading� Each of these jobs is con�
sidered for loading in the sorted order� The processor
requirement for the job will be compared against the
scheduler�s job processor limit� If the job�s processor
request cannot be satis�ed� that job will no longer be
considered a candidate for loading�

Multiple possible processor assignments for the job
are considered� For each possible processor assign�
ment� a cost is computed� The cost considers the
number of nodes occupied by the potentially pre�
empted jobs� their relative priority� and how much
time remains in their do�not�disturb time� In no case
will a job be preempted for another job of a lower
priority class� Jobs of benchmark and debug class
will never be preempted� If no possible processor as�
signment for loading the waiting job is located� its
loading will be deferred� If a possible processor as�
signment is located� the lowest cost set of processors
will be reserved for the exclusive use of this waiting
job and jobs occupying those processors will be pre�

empted when their do�not�disturb times have been
exhausted�

Only one job will will have processors reserved for
it at any point in time� Once a set of processors
have been reserved for a waiting job� the reservation
of processors for other waiting jobs will be deferred
until the selected job has been loaded� An exception
is made only in the case that a higher priority class
job exceeds its maximumwait time� For example� an
interactive class job could preempt the reservation of
processors for a production class job� The job with
reserved processors can be loaded into other proces�
sors if another compatible set of processors becomes
available at an earlier time� As soon as that job is
loaded� the reserved processors are made generally
available� This mechanism insures timely interactiv�
ity and prevents the starvation of large jobs�

In the second scheduler pass� other executable jobs
are recorded in a list sorted by job class priority and
within each priority by the time waiting for loading�
Each job in the sorted list is considered for proces�
sor assignment� First the limits �job processor limit�
large job limit� and job class limit
 are checked to
determine if the job should be allocated processors�
Any job satisfying these limits will have its barrier
wire circuit and processor requirements considered�
If the job can have its requirements met either with
unallocated resources or resources which can be made
available by preempting jobs which have exceeded
their do�not�disturb time� it will have a barrier wire
circuit and processors assigned� If a speci�c barrier
wire is not requested� one of those available will be
assigned� All four barrier wire circuits are considered
for use and selected on the basis of lowest contention�
More e�cient relocation of jobs can be achieved by
using all four barrier wire circuits�

The time required to save the state of a job on
disk can be up to four minutes� Given this delay�
it is not ideal to queue the loading of a job until
the processors assigned to it are actually available�
Whenever processors are actually made available� the
job scheduler is executed again� This insures that
when processors become available� they are assigned
to the most appropriate jobs then available�

When a newly started job can immediately begin
execution in a variety of possible sets of processor� a
best��t algorithm is used to make the selection� We
also try to locate debug and benchmark class jobs�
which can not be preempted� together in order to
avoid blocking large jobs�

��



h h c c a a a a CLAS JOB�USER PID COMMAND �PE BASE W ST MM�SS

h h c c a a a a Int d � colombo ���� icl� 	 �

 � R �����

h h c c a a a a Int h � mshaw ���� icf
d 
� 
�
 � R 

�



h h c c a a a a

Bmrk g � grote ���� warpslav 
� �

 � R 

��


h h c c a a a a

h h c c a a a a Prod a � caturla ��
�� moldy ��	 �

 � R �
��
�

h h c c a a a a Prod b � colombo �	
�� vdif 	 


 
 R �����

h h c c a a a a Prod c � wenski �	�	� pproto�� 
� ��
 
 R 	����

Prod e � colombo 	��� icl
 	 

� � R ���


b d g g a a a a Prod f � colombo 		�
 icl� 	 �
� � R ����

b d g g a a a a Prod i � dan ��	� camille 
� 
�
 
 O 
��
	

e f g g a a a a Prod j � vickie ��
�
 kiten �� �

 
 O �
����

e f g g a a a a

b d g g a a a a

b d g g a a a a

e f g g a a a a

e f g g a a a a

gangster�

Figure �� Sample gangster display� The W �eld shows the barrier wire used� The MM�SS �eld shows the
total execution time� The ST �eld shows the job�s state� i 
 swapping in� N 
 new job� not yet assigned
nodes or barrier wire� o 
 swapping out� O 
 swapped out� R 
 running� S 
 suspended� W 
 waiting job�
assigned nodes and barrier wire�

��� Client Interface

The default mode of operation for the Cray T�D re�
quires all jobs� batch and interactive� to be initiated
through a program called mppexec� which will ac�
cept as arguments the number of processors required�
speci�c processor requirements� speci�c barrier wire
requirements� etc� The Gang Scheduler takes advan�
tage of this feature by creating a wrapper for mppexec
which is upwardly compatible with it� The interface
registers the job with the Gang Scheduler and waits
for an assignment of processors and barrier circuit be�
fore continuing� On a heavily utilized computer� this
typically takes a matter of seconds for small numbers
of processors and possibly much longer for large jobs�
The only additional argument to the Gang Scheduler
interface is the job class� which is optional� By de�
fault� interactive jobs are assigned to the interactive
job class� the Totalview debugger jobs are assigned
to the debug class� and batch jobs are assigned to the
production job class�

��� The Gangster Tool

We provide users with an interactive tool� called
�gangster�� for observing the state of the system and

controlling some aspects of their jobs� Gangster com�
municates with the Gang Scheduler to determine the
state of the machine�s processors and individual jobs�
Gangster�s three�dimensional node map displays the
status of each node �each node consists of two pro�
cessing elements on the T�D
� Gangster�s job sum�
mary reports the state of each job� including jobs
moving between processors and disk� Users can use
gangster to change the class of their own jobs or to ex�
plicitly move their job�s state to disk �suspending ex�
ecution
 or make it available for execution �resume
�

A sample gangster display is shown in Fig� �� This
display identi�es jobs in the system and assigned pro�
cessors� The node map is on the left� A dot or letter
denotes each node �two processing elements on the
T�D
� a dot indicates the node is not in use� a let�
ter designates the job currently occupying that node�
On the right is a summary of all jobs� Node number
��� is in the upper left corner of the lowest plane�
The X axis extends downward within a plane� The
Y axis extends up� with one Y value in each plane�
The Z axis extends to the right� This orientation was
selected for ease of display for a ��� processor T�D
con�guration�

��



Global limits� User Run Aggregate
Period Limit Limit mpp�pe�limit

����� � ����� � � � � � �� ��� � ���
����� � ����� � � � � � �� �� � ���
����� � ����� � � � � � �� �� � ��������

����� � ����� � � � � � �� ��� � ���

Queue limits�
Job Job

Queue User Run Time Processor Aggregate
Name Limit Limit Limit Limit mpp�pe�limit
pe�� �� � �� � � h� � h ��� �� ���� ���
pe�� �� � �� ���� � h� � h ��� �� ���� ��������

pe�� long �� � �� � �� h� �� h ��� ��� ��� �������

pe��� short �� � �� � �� m� �� m ���� �� ���� ���
pe��� �� ���� �� � � h� � h ���� ��� ���� ������

pe��� short �� ���� �� � �� m� �� m ���� ��� ���� ������

pe��� �� ���� �� � � h� � h ���� ��� ���� ������
�Varies by time of day and�or day of week

Table �� Changes made in NQS con�guration parameters when the Gang Scheduler was introduced� User
Limit is the maximum number of batch jobs a single user may have executing� Run Limit is the maximum
number of batch jobs 	from a certain queue
 the system may have executing at one time� mpp�pe�limit is
the maximum number of processors which the batch jobs may have allocate at one time�

��� NQS Con�guration

Jobs may be submitted to the Cray T�D interactively
or via the NQS batch queuing system� Interactive
jobs are limited to �� processors and � hours� Prior
to installation of the Gang Scheduler� our NQS batch
system was con�gured to leave an adequate number of
processors available for interactive computing during
the day� This was changed when the Gang Scheduler
was introduced� and now NQS fully subscribes the
machine during the day� At night� it oversubscribes
the machine by as much as ���� �Table �
�

Note that jobs requiring more than a four hour
time limit were originally limited to �� processors�
Also note that substantial compute resources were
sacri�ced in order to insure processors for interactive
computing� This was particularly noticeable in the
early morning hours as the mpp�pe�limit dropped to
�� at ����� in order to insure the availability of ���
processors for interactive use at ������ Frequently
this left many processors idle� Even so� under the oc�
casionally heavy interactive workload� all processors
would be allocated and interactive jobs experienced
lengthy initiation delays�

With the gang scheduler� NQS is now allowed to
fully subscribes the computer and oversubscribe at

night� The overallocation of processors permits the
execution of larger jobs and makes more jobs available
for fully packing the T�D�s torus of processors� NQS
jobs now relinquish their processors only as needed�
not in anticipation of interactive work� During peri�
ods of heavy use� this improves our realized through�
put substantially while preserving good interactivity�
While average interactivity has decreased slightly due
to interference from NQS jobs� the worse case startup
time has dropped from tens of minutes to about one
minute� This is still quite acceptable to our user com�
munity� especially when accompanied by a substan�
tial increase in realized batch throughput� We also
see a few jobs relocated to better utilize the avail�
able processors during periods of heavy use� especially
when jobs requiring �� or ��� processors exist�

��	 Performance Results

In order to quantify the e�ect upon system through�
put and interactivity under heavy load� we have
continuously tabulate system performance with the
Gang Scheduler� Before installing the Gang Sched�
uler� we did the same for the standard UNICOS MAX
scheduler and the Distributed Job Manager �DJM
�
DJM is a gang scheduler developed by the Minnesota

��



Job Size

C
P
U
U
ti
liz
at
io
n
�P
er
ce
nt
�

� � � �� �� �� ��� �	�



�


�


�


�


	


�

Jan ��
Apr ��

Oct ��

Figure �� Changes in workload distribution due to use of the Gang Scheduler�

Consecutive Weeks

C
P
U
U
ti
liz
at
io
n
�P
er
ce
nt
�




�


�


�


�


	


�


�

UNICOS MAX

DJM
Gang Scheduler

��
�

��
�

	

�

Figure ��� Weekly utilization with the three schedulers� Dashed lines and numbers denote averages�

Supercomputer Center� which has undergone sub�
stantial modi�cation for performance enhancements
by Cray analysts at LLNL� All of the DJM code to ac�
complish job swapping is new� The enhanced version
of DJM was used for testing purposes�

Fig� � demonstrates the Gang Scheduler�s ability to
execute large jobs� note the dramatic improvement
in throughput of ��� and ��� processor jobs� This
charts the distribution of resources allocated to each
job size as percentage of CPU resources actually de�
livered to customers� The percentage of gross CPU
resources which are delivered to large jobs has in�

creased by an even wider margin� The January ����
period is the last full month of operation with the
standard UNICOS MAX operating system� April is
just after installation of the Gang Scheduler� and by
October the workload had shifted to take advantage
of its improved support for large jobs�
The best measure of success is probably actual

throughput achieved� While utilization is quite low
on weekends� the improvement in throughput at other
times has dramatically improved with preemptive
schedulers�� Fig� �� summarizes utilization of proces�

�While DJM would also have provided for good interactiv�

��



Monthly Data ���	�����

C
P
U
U
ti
liz
at
io
n
�P
er
ce
nt
�

A S O N D J F M A M J J A S O



�


�


�


�


�


UNICOS MAX

DJM
Gang Scheduler

Figure ��� Monthly utilization with the three schedulers�

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

nu
m

be
r 

of
 jo

bs

slowdown

average

0

100

200

300

400

500

600

700

800

1 2 4 6 8 10

nu
m

be
r 

of
 jo

bs

bounded slowdown

average

Figure ��� Histograms of slowdown and bounded slowdown of interactive jobs�

sor resources over the course of several entire weeks�
Over the longer term� utilization has improved even
more dramatically while providing good interactivity�
as shown in Fig� ��� CPU utilization reported is the
percentage of all CPU cycles available which are de�
livered to customer computation� Weekly utilization
rates have reached over ����

Even though the improved utilization is impressive�
this should not come at the expense of interactive

ity and throughput� it became available at the same time as our

Gang Scheduler was completed and we felt that continued de�

velopment of our Gang Scheduler was worthwhile� In addition�

our Gang Scheduler provided the means to arbitrarily lock jobs

into processors� This was important for us to be able to insure

optimal throughput for jobs speci�ed by our management�

jobs� To quantify this� we tabulated the slowdowns
of interactive jobs� i�e� the ratio of the time they spent
in the system to the time they actually ran� This was
done for the period of July �� through August ���
During this period� ���� interactive jobs were run�
using a total of ���� million node�seconds� and ����
batch jobs were run� using a total of ����� million
node�seconds�

The ratio of the total time all interactive jobs spent
in the system to their total runtimes was ����� lead�
ing one to assume only ��� overhead� However� this
is misleading� because slowdowns of individual jobs
should be checked� The full distribution of slowdowns
is plotted in Fig� ��� Actually� only the low part of

��



Job Size

Jo
bs

� � � �� �� �� ��� �	�



�




�




�




�




	




Undisturbed

Preempted

Figure ��� Likelihood of preemption for di�erent job sizes�

the distribution is shown� as it has a very long tail�
but most jobs have rather low slowdowns� The most
extreme case was a one�second job that was delayed
for just less than �� minutes� leading to a slowdown
of ����� The average slowdown was determined to be
�����

While the high average slowdown is disappointing�
it too is misleading� The problem is that many in�
teractive jobs have very short runtimes� so a high
slowdown may not be indicative of a real problem�
Indeed� merely loading the application fromdisk typi�
cally takes about ��� seconds per processor used� thus
a one second job running on � nodes will require two
seconds of load time� for an optimal slowdown of ��
which is actually quite reasonable in this case� In or�
der to counter the e�ect of short jobs� we also plot the
bounded slowdown 	��
� For long running jobs� this is
the same as the slowdown� But for short jobs� the
denominator is taken as the �interactivity threshold�
rather than as the actual �very short
 runtime� In
processing the data for Fig� ��� we used a threshold
of �� seconds� the average bounded slowdown is then
����� and the tail of the distribution is also shorter�

��
 Operational Characteristics

Figs� �� to �� portray the gang scheduler in operation�
These �gures are based on detailed logs of all jobs and

all job preemptions during four months of production
use� from June ���� through September �����

It should be noted that only ���� of jobs that
completed normally were ever preempted� Fig� ��
shows the likelihood of preemption as a function of
the job size� and shows that di�erent size jobs were
preempted in roughly equal proportions� While most
jobs were not preempted or were only preempted a
small number of times� the maximal number of pre�
emptions observed was pretty high� one job was pre�
empted �� times before completing� The histogram
of number of preemptions is shown in Fig� ���

Finally� we take a look at the average length of the
time quanta for the di�erent sizes� This is shown in
Fig� ��� once for jobs that were actually preempted�
and again for all jobs �i�e� including those that ran to
completion without being preempted even once
� As
expected� use of the do�not�disturb time multiplier
leads to larger average time quanta for larger jobs�
�The ����processor �gure is a special case of only one
job� Jobs of this size are normally not preempted�


��� Future Development

While the Gang Scheduler manages the currently ac�
tive jobs well� the NQS batch system selects the jobs
to be started� It would be desirable to integrate the
Gang Scheduler with NQS in order to more e�ciently
schedule all available jobs� Work is also planned for

��



0

50

100

150

200

0 10 20 30 40 50 60 70 80

nu
m

be
r 

of
 jo

bs

number of preemptions

12457
495

Figure ��� Histogram of the number of preemptions su�ered by di�erent jobs�

Job Size

A
ve
ra
ge
Q
ua
nt
a
�S
ec
on
ds
�

� � � �� �� �� ��� �	�



�




�




�




�




	



preempted

all jobs

Figure ��� Average time quanta for di�erent size jobs�

the gang scheduling of jobs across a heterogeneous
collection of computers�

� Conclusions

Gang scheduling has often been advocated based on
its advantages of

� presenting jobs with an environment similar to
that of a dedicated machine� thus allowing �ne

grain interactions based on user�level communi�
cation and busy waiting 	�
�

� allowing jobs with extreme requirements to share
the system� a job that requires all the nodes does
not have to wait for all previous jobs to termi�
nate� nor does it delay subsequent jobs�

� support for interactive work by using time slic�
ing� which guarantees a reasonable response time
for short jobs� and

��



� not placing any restrictions or requirements on
the model of computation and programming
style�

However� many researchers have expressed the fear
that using gang scheduling would lead to unaccept�
able system performance due to the overheads in�
volved in context switching and the loss of resources
to fragmentation�
In contrast� we have shown that gang scheduling

can improve system performance signi�cantly relative
to static space slicing policies often used in practice
on parallel supercomputers� Gang scheduling adds
�exibility to resource allocations� and reduces the im�
pact of bad decisions� This contributes directly to
a reduction in fragmentation� and more than o�sets
the cost of overheads� Indeed� experience with us�
ing gang scheduling for a production workload on the
Cray T�D at Lawrence Livermore National Lab has
shown a dramatic increase in system utilization�
The main obstacle to widespread use of gang

scheduling is memory pressure� If gang scheduling
is performed at a �ne granularity� all jobs need to be
memory resident at the same time� so each has less
memory available� The alternative is to swap jobs
to disk when they are preempted� and swap them
in again when scheduled� This is a viable approach�
but it requires su�cient resources to be invested in
adequate I�O facilities� The combination of demand
paging and prefetching with gang scheduling remains
an interesting topic for future research�

References

	�
 G� Alverson� S� Kahan� R� Korry� C� McCann�
and B� Smith� �Scheduling on the Tera MTA��
In Job Scheduling Strategies for Parallel Pro�
cessing� D� G� Feitelson and L� Rudolph �eds�
�
pp� ������ Springer�Verlag� ����� Lecture Notes
in Computer Science Vol� ����

	�
 Cray Research� Inc�� Cray T�D System Archi�
tecture Overview� Order number HR������� Sep
�����

	�
 D� Das Sharma and D� K� Pradhan� �Job
scheduling in mesh multicomputers�� In Intl�
Conf� Parallel Processing� vol� II� pp� ��������
Aug �����

	�
 D� G� Feitelson� �Packing schemes for gang
scheduling�� In Job Scheduling Strategies

for Parallel Processing� D� G� Feitelson and
L� Rudolph �eds�
� pp� ������� Springer�Verlag�
����� Lecture Notes in Computer Science
Vol� �����

	�
 D� G� Feitelson� A Survey of Scheduling in Mul�
tiprogrammed Parallel Systems� Research Re�
port RC ����� ������
� IBM T� J� Watson Re�
search Center� Oct �����

	�
 D� G� Feitelson and B� Nitzberg� �Job character�
istics of a production parallel scienti�c workload
on the NASA Ames iPSC������ In Job Schedul�
ing Strategies for Parallel Processing� D� G� Fei�
telson and L� Rudolph �eds�
� pp� ��������
Springer�Verlag� ����� Lecture Notes in Com�
puter Science Vol� ����

	�
 D� G� Feitelson and L� Rudolph� �Distributed hi�
erarchical control for parallel processing�� Com�
puter ������ pp� ������ May �����

	�
 D� G� Feitelson and L� Rudolph� �Evaluation
of design choices for gang scheduling using dis�
tributed hierarchical control�� J� Parallel 	 Dis�
tributed Comput� ������ pp� ������ May �����

	�
 D� G� Feitelson and L� Rudolph� �Gang schedul�
ing performance bene�ts for �ne�grain synchro�
nization�� J� Parallel 	 Distributed Comput�
�	�
�� pp� �������� Dec �����

	��
 D� G� Feitelson and L� Rudolph� �Parallel job
scheduling� issues and approaches�� In Job
Scheduling Strategies for Parallel Processing�
D� G� Feitelson and L� Rudolph �eds�
� pp� �����
Springer�Verlag� ����� Lecture Notes in Com�
puter Science Vol� ����

	��
 D� G� Feitelson� L� Rudolph� U� Schwiegelshohn�
K� C� Sevcik� and P�Wong� �Theory and practice
in parallel job scheduling�� In IPPS
�� Work�
shop Job Scheduling Strategies for Parallel Pro�
cessing�

	��
 B� Gorda and R� Wolski� �Time sharing mas�
sively parallel machines�� In Intl� Conf� Parallel
Processing� vol� II� pp� �������� Aug �����

	��
 B� C� Gorda and E� D� Brooks III� Gang
Scheduling a Parallel Machine� Technical Re�
port UCRL�JC�������� Lawrence Livermore Na�
tional Laboratory� Dec �����

	��
 R� L� Henderson� �Job scheduling under the
portable batch system�� In Job Scheduling
Strategies for Parallel Processing� D� G� Fei�
telson and L� Rudolph �eds�
� pp� ��������

��



Springer�Verlag� ����� Lecture Notes in Com�
puter Science Vol� ����

	��
 S� Hotovy� �Workload evolution on the Cornell
Theory Center IBM SP��� In Job Scheduling
Strategies for Parallel Processing� D� G� Feitel�
son and L� Rudolph �eds�
� pp� ������ Springer�
Verlag� ����� Lecture Notes in Computer Science
Vol� �����

	��
 Intel Corp�� iPSC
��� Multi�User Accounting�
Control� and Scheduling Utilities Manual� Or�
der number ����������� May �����

	��
 M� Jette� D� Storch� and E� Yim� �Timesharing
the Cray T�D�� In Cray User Group� pp� ����
���� Mar �����

	��
 K� Li and K�H� Cheng� �A two�dimensional
buddy system for dynamic resource allocation
in a partitionable mesh connected system�� J�
Parallel 	 Distributed Comput� ������ pp� ���
��� May �����

	��
 D� Lifka� �The ANL�IBM SP scheduling sys�
tem�� In Job Scheduling Strategies for Paral�
lel Processing� D� G� Feitelson and L� Rudolph
�eds�
� pp� �������� Springer�Verlag� ����� Lec�
ture Notes in Computer Science Vol� ����

	��
 C� McCann� R� Vaswani� and J� Zahorjan� �A
dynamic processor allocation policy for multi�
programmed shared�memory multiprocessors��
ACM Trans� Comput� Syst� ������ pp� ��������
May �����

	��
 C� McCann and J� Zahorjan� �Scheduling mem�
ory constrained jobs on distributed memory par�
allel computers�� In SIGMETRICS Conf� Mea�
surement 	 Modeling of Comput� Syst�� pp� ����
���� May �����

	��
 J� K� Ousterhout� �Scheduling techniques for
concurrent systems�� In �rd Intl� Conf� Dis�
tributed Comput� Syst�� pp� ������ Oct �����

	��
 E� W� Parsons and K� C� Sevcik� �Multiproces�
sor scheduling for high�variability service time
distributions�� In Job Scheduling Strategies
for Parallel Processing� D� G� Feitelson and
L� Rudolph �eds�
� pp� �������� Springer�Verlag�
����� Lecture Notes in Computer Science
Vol� ����

	��
 R� C� Regis� �Multiserver queueing models of
multiprocessing systems�� IEEE Trans� Com�
put� C������� pp� �������� Aug �����

	��
 E� Rosti� E� Smirni� L� W� Dowdy� G� Ser�
azzi� and B� M� Carlson� �Robust partitioning
schemes of multiprocessor systems�� Perfor�
mance Evaluation �
������ pp� �������� Mar
�����

	��
 E� Rosti� E� Smirni� G� Serazzi� and
L� W� Dowdy� �Analysis of non�work�conserving
processor partitioning policies�� In Job
Scheduling Strategies for Parallel Processing�
D� G� Feitelson and L� Rudolph �eds�
� pp� ����
���� Springer�Verlag� ����� Lecture Notes in
Computer Science Vol� ����

	��
 B� Schnor� �Dynamic scheduling of parallel ap�
plications�� In Parallel Computing Technolo�
gies� V� Malyshkin �ed�
� pp� �������� Springer�
Verlag� Sep ����� Lecture Notes in Computer
Science vol� ����

	��
 K� C� Sevcik� �Application scheduling and pro�
cessor allocation in multiprogrammed parallel
processing systems�� Performance Evaluation
�
������ pp� �������� Mar �����

	��
 K� C� Sevcik� �Characterization of parallelism
in applications and their use in scheduling�� In
SIGMETRICS Conf� Measurement 	 Modeling
of Comput� Syst�� pp� �������� May �����

	��
 A� Tucker and A� Gupta� �Process control and
scheduling issues for multiprogrammed shared�
memory multiprocessors�� In ��th Symp� Oper�
ating Systems Principles� pp� �������� Dec �����

	��
 M� Wan� R� Moore� G� Kremenek� and
K� Steube� �A batch scheduler for the Intel
Paragon with a non�contiguous node allocation
algorithm�� In Job Scheduling Strategies for Par�
allel Processing� D� G� Feitelson and L� Rudolph
�eds�
� pp� ������ Springer�Verlag� ����� Lecture
Notes in Computer Science Vol� �����

	��
 K� Windisch� V� Lo� R� Moore� D� Feitelson�
and B� Nitzberg� �A comparison of workload
traces from two production parallel machines��
In �th Symp� Frontiers Massively Parallel Com�
put�� pp� �������� Oct �����

	��
 Q� Yang and H� Wang� �A new graph approach
to minimizing processor fragmentation in hyper�
cube multiprocessors�� IEEE Trans� Parallel
	 Distributed Syst� 
����� pp� ���������� Oct
�����

��


